New Codes with the Same Weight Distributions as the Goethals Codes and the Delsarte-Goethals Codes - Information Theory, 1995. Proceedings., 1995 IEEE International Symposium on

نویسندگان

  • Tor Helleseth
  • P. Vijay Kumar
چکیده

The Goetha ls code is a b inary nonl inear code of length 2""" which has 22m+1-3m-2 codewords and m i n i m u m H a m m i n g dis tance 8 for a n y odd m 2 3. We cons t ruc t n e w codes over 2 4 such that their G r a y maps lead to codes w i t h the same weight dis t r ibut ion as the Goetha ls codes and the Delsar te-Goethals codes.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Z4-linearity of Kerdock, Preparata, Goethals, and related codes

Certain notorious nonlinear binary codes contain more codewords than any known linear code. These include the codes constructed by Nordstrom-Robinson , Kerdock, Preparata, Goethals, and Delsarte-Goethals . It is shown here that all these codes can be very simply constructed as binary images under the Gray map of linear codes over Z4, the integers mod 4 (although this requires a slight modificat...

متن کامل

On the Trellis Representation of the Delsarte-Goethals Codes

In this correspondence, the trellis representation of the Kerdock and Delsarte–Goethals codes is addressed. It is shown that the states of a trellis representation of DG(m; ) under any bit-order are either strict-sense nonmerging or strict-sense nonexpanding, except, maybe, at indices within the code’s distance set. For 3 and for m 6, the state complexity, smax[DG(m; )], is found. For all value...

متن کامل

4 - Linearity of Kerdock , Preparata , Goethals and Related Codes ∗

Certain notorious nonlinear binary codes contain more codewords than any known linear code. These include the codes constructed by Nordstrom-Robinson , Kerdock, Preparata, Goethals, and Delsarte-Goethals . It is shown here that all these codes can be very simply constructed as binary images under the Gray map of linear codes over 4, the integers mod 4 (although this requires a slight modificati...

متن کامل

A new proof of Delsarte, Goethals and Mac Williams theorem on minimal weight codewords of generalized Reed-Muller codes

We give a new proof of Delsarte, Goethals and Mac williams theorem on minimal weight codewords of generalized Reed-Muller codes published in 1970. To prove this theorem, we consider intersection of support of minimal weight codewords with affine hyperplanes and we proceed by recursion.

متن کامل

The Preparata and Goethals codes: Trellis complexity and twisted squaring constructions

The trellis complexity of the Preparata and Goethals codes is examined. It is shown that at least for a given set of permutations these codes are rectangular. Upper bounds on the state complexity profiles of the Preparata and Goethals codes are given. The upper bounds on the state complexity of the Preparata and Goethals codes are determined by the DLP of the extended primitive doubleand triple...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1996